
By: Ravi Lachhman . Evangelist at Harness

One Developer
Experience —
Build, Deploy,
and Experiment

© Harness Inc. 2021

Summary

04

05

07

08

10

11

14

15

17

18

20

Table of Contents

What Is Developer Experience/DX?

How Do You Measure Developer Experience?

What Does Good Developer Experience Look Like?

Typical Journey to Production

Expectation On and of Modern Software Engineers

Best Experience When Building Software/Continuous Integration

Best Experience When Deploying Software/Continuous Delivery

Importance of Experimentation for Developer Experience

Understanding Normality in Applications

Continuing On the Optimization Journey — Cost and Density

The Harness Platform: One DX From Idea to Production and Back

03

One Developer Experience — Build, Deploy, and Experiment

P / 2© Harness Inc. 2021

In Conclusion21

Author Appendix22

Summary

Taking a look at where major DevOps trends are headed, a
common theme across many tools and practices is improving
the Developer Experience. One paradigm of thinking is that if
you improve your internal customer experience, your external
customers will benefit. The Developer Experience has been
quite siloed/segregated for a multitude of reasons, such as
scaling or having best-of-breed technologies to support
individual concerns. In this eBook, we will go through how you
can improve your developer experience across the entire SDLC.

P / 3© Harness Inc. 2021

One Developer Experience — Build, Deploy, and Experiment

Push me
I just push a button and
get a slice of pizza on my
“Two Pizza Team”

.SH

Local
Code Coverage

XML

Remote
Dev-Int Build

Groovy

Remote

Groovy

Remote

PrometheusQL

Remote

.SH

Remote
Execute Tests

I have to jump through
several machines, products,
and platforms to build a slice...

What Is Developer
Experience/DX?

Developer experience is the overall interactions and feeling that the developer feels
when working towards a goal. It is similar to the definition of User Experience (UX), but
the primary user is a software engineer. The core definition of UX is how a user interacts
and experiences a product, system, or service focusing on perceptions of utility, ease
of use, and efficiency. User Experience focuses on improving customer satisfaction and
loyalty. Developers, however, are seen as internal customers vs. external customers that
traditional UX targets.

With the consumerization of enterprise IT, the expectation for users of enterprise systems
continues to rise because of their experiences outside of the enterprise. Seen as highly
technical when compared to an average business system user, the Developer Experience
can sometimes take a back seat because of a stigma that “developers can just figure it
out.” Having poor DX is a detriment to overall engineering efficiency and the ability to
innovate and iterate while not adding to technical debt.

P / 4© Harness Inc. 2021

One Developer Experience — Build, Deploy, and Experiment

Figure 1: What is DX?

Findability Findability is how easy or quickly a user of your software or service can find the
functionality they are looking for. Having logical, contextual, and concise search/
navigation features are important. Supporting the user journey across their changing
tasks alludes to good findability. Similarly to measuring usability, asking users what
they think or having the ability to record times/heatmaps of what is being clicked on
or where frustration starts are all good steps.

P / 5© Harness Inc. 2021

One Developer Experience — Build, Deploy, and Experiment

How Do You
Measure Developer
Experience?

Credibility Credibility is that your users trust your software or service to solve their problems.
Credibility is a long-term pillar, not only for today’s needs but for tomorrow’s needs
also. The changing landscape of developer technology does make this hard to keep
up. For Developer Experience, having a service that is reliable and performant is key to
credibility. Meeting the scaling needs of the wide swath of technologies that internal
customers can be challenging. Continued adoption of your software or service is a
key measure of credibility.

Similar to User Experience, there can be multiple objective and subjective measures
of Developer Experience. Focusing on the three pillars of User Experience, usability,
findability, and credibility, are excellent markers of measuring Developer Experience.

Usability Usability is how easy your software or service is to use. It answers the question, “Would
a first-time user of your platform be able to achieve their goal?” Also, usability is about
removing barriers. For example, unnecessary steps. Measuring usability for internal
customers might be a little more challenging if the frameworks that are in place for UX
for external customers are not there. Surveys are a good way of gathering feedback and
also, if possible, using remote usability tests such as heat-mapping/tracking tools to
measure interaction and drop-off.

How Do You
Measure Developer
Experience? (Cont.)

P / 6© Harness Inc. 2021

One Developer Experience — Build, Deploy, and Experiment

One pitfall to avoid is just focusing on the output first; for example, observability in the
manufacturing world infers that if the output is good, the internal states are good. If your
team or organization is producing a lot, then the DX must be good. The truth is, that’s
not necessarily the case: high production might be one indicator but there might also be
high toil or high burn. The expertise, staff, and overhead costs are high to produce large
amounts of artifacts.

Good Developer Experience will lead to more efficient, and thus more highly productive
teams. Looking at the four key metrics from Accelerate (deployment frequency, lead time
for changes, MTTR, and change failure rate), they can all improve.

Usability

Findability Credibility

Figure 2: UX/DX Pillars

What Does Good
Developer Experience
Look Like?

P / 7© Harness Inc. 2021

One Developer Experience — Build, Deploy, and Experiment

Good Developer Experience supports innovation, iteration, safety, and velocity. Great
Developer Experience takes those pillars by allowing developers to focus on and
experiment with what is important and not pick up technical debt with non-functional
or operational concerns along the journey. Software is a team sport. Allowing for quick
integration and deployment of changes to get into the hands of the end users is the
goal of software engineering.

Two of the biggest detriments of Developer Experience are context switching and
decision fatigue. Imagine a customer service representative at an airline having a high
volume of complex issues, switching between multiple systems and reaching out to
different departments for answers/expertise - that can drive up resolution time (e.g.
context switching). The need to constantly make decisions and negotiate can also lead
to decision fatigue. Ironically, software engineers face similar dilemmas navigating the
end of their workstreams, e.g. heading to production and supporting production.

Barriers to learning and
solving goals are removed.

Figure 3: Good Developer Experience

What Does Good
Developer Experience
Look Like? (Cont.)

P / 8© Harness Inc. 2021

One Developer Experience — Build, Deploy, and Experiment

Because of competing priorities and deadlines, software engineers are great at finding
the path of least resistance and technical debt can accrue if not careful. Reducing context
switching and decision fatigue for developers by having highly usable and credible
software and platforms alludes to a great DX.

Comparing StackOverflow Developer Survey results over the last few years, an interesting
trend appears. In today’s market, it is not normal for someone to work their entire career
on one project or at one firm. The amount of time that developers are on projects is
decreasing, and the amount of time that it takes developers to be productive members
of the team (ramp up time) is increasing. Good DX will help reduce ramp up time and
assist in the ultimate goal: getting ideas to production.

Typical Journey
to Production

If your software is not available to someone or something else, is your software even a
piece of software? As metaphoric as that statement is, as a software engineer, having
what you built on your local machine does nobody any good. At its most simplistic form,
you need to build, test, and deploy your changes.

Figure 4: Overly Simple

Build Test Deploy

P / 9© Harness Inc. 2021

One Developer Experience — Build, Deploy, and Experiment

Figure 5: Deployable Artifact

Typical Journey
to Production (Cont.)

Your idea can transverse many environments and pieces of infrastructure before being in
the hands of the users. Even taking safety into consideration, you might have to navigate
release strategies, such as a canary release, to incrementally update running systems. As
more items shift left towards the developer, the amount of broadened knowledge, such as
infrastructure automation and DevSecOps practices, can be challenging to learn.

Thanks to advancements in Continuous Integration and Continuous Delivery, your changes
can be built, packaged, tested, and deployed safely into new or existing infrastructure.
Automation and expertise can be placed into CI/CD pipelines and beyond to help further
the journey and achieve DX goals. A more complete journey to production can look like the
journey below; getting a deployable artifact and deploying that artifact.

Going from code to artifact might look like the below diagram:

Test Build Package Publish

Developer
Commit Code

Typical Journey to
Production (Cont.)

P / 10© Harness Inc. 2021

One Developer Experience — Build, Deploy, and Experiment

Though having an artifact is only part of the journey. In modern software delivery there
is a need to orchestrate confidence building steps and safety. Automation is key for
consistency and a good developer experience. A highly-automated deployment to
production might look like the below (leveraging a canary release):

Figure 6: Automated Deployment

QA ProductionDev

New Artifact

Running Parallel

25%

Stable

Canary

Stable

Stable

Canary Phase 1

Canary

Canary

Stable

Stable

Canary Phase 2

Canary

Canary

Canary

Canary

Canary Phase 3

50% 100%
Traffic Promoted (For a 3 Phase Canary)

3 Phase Canary 3 Phase Canary Automated Tests 7 Phase Canary

Performance Verify

Expectation On and
of Modern Software
Engineers

Engineers, in general, are natural optimizers. The ability to work more efficiently is very
important. Because of the rise in incremental development practices such as Agile, the
velocity of work and demands for features can be infinite. The only limitation to software
is really time and resources.

Expectation On and
of Modern Software
Engineers (Cont.)

P / 11© Harness Inc. 2021

One Developer Experience — Build, Deploy, and Experiment

Best Experience When
Building Software/
Continuous Integration

Extending the positive local build experience outside of a developer’s development
environment does take thought. Continuous Integration is build automation and focuses
on externalizing the build. Though, more than just the compiled source code can go into
a build; the end product for Continuous Integration is a release candidate.

A core tenet of engineering efficiency is meeting your internal customers where they are.
For software engineers, this is being as close to their tools and projects as possible. Like
many modern pieces of application infrastructure, shifting left to the developer means
being included in the project structure in source code management (SCM).

As the velocity of builds increases to match the mantra that “every commit should trigger
a build,” development teams could potentially be generating several builds per day per
team member, if not more. The firepower required to produce a modern containerized
build has increased over the years, versus traditional application packaging.

Software engineers are also naturally inclined to better the craft and in a field that requires
constant learning. Several paradigms continue to shift left towards the developer, as
brought up in the previous section, such as security with the DevSecOps movement and
application infrastructure automation thanks to Kubernetes. The engineering burden
continues to increase.

Modern software engineers expect a good DX. Needing to buck the trend of the ever-
increasing ramp up times to be productive, software engineers can feel fulfillment seeing
the fruits of their labor quicker by building and deploying at the pace of innovation.

P / 12© Harness Inc. 2021

One Developer Experience — Build, Deploy, and Experiment

Best Experience When
Building Software/
Continuous Integration (Cont.)

Typically, an organization’s first forays in running automated tests in a repeatable and
consistent fashion end up in their Continuous Integration pipelines. Usually, this is an
easy lift; the same code/test coverage that a developer is subject to in their local build
makes its way into the build pipeline since those steps should have been executed
before the commit.

A common distributed system fallacy is that one person understands the entire end-
to-end of the system. This is not true. When adding new features or expanding test
coverage, we are prone to a Big Ball of Mud pattern, both in development and test-wise.
Execution times and complexity of test suites potentially increase with every new
change. By running tests in an intelligent manner and only executing tests that are
prudent to the new changes, this significantly combats test coverage complexity.

Showing time saved by executing test coverage in an intelligent manner:

Test Optimization — Time Saved

P / 13© Harness Inc. 2021

One Developer Experience — Build, Deploy, and Experiment

Best Experience When
Building Software/
Continuous Integration (Cont.)

Helping determine appropriate test coverage by modeling coverage and changes:

Automatically Building Test Coverage Graph and Model

P / 14© Harness Inc. 2021

One Developer Experience — Build, Deploy, and Experiment

Best Experience When
Deploying Software/
Continuous Delivery

Building software is typically done by convention, but deploying software can be
very bespoke. Software is the culmination of decisions before, during, and potentially
after your time on a project or product team. Navigating all of the application and
infrastructure choices, especially on a live system with user traffic, can be complex
and unique to each team.

Deploying incremental changes into a development-integration environment usually
is geared towards DX as developers have full control over the environment. Though
as the march towards production continues, certain organizations might be under
business controls that developers are not allowed in production. This is where
Continuous Delivery steps in.

 Kubernetes Canary Deployment

P / 15© Harness Inc. 2021

One Developer Experience — Build, Deploy, and Experiment

Best Experience When
Deploying Software/
Continuous Delivery (Cont.)

The definition of Continuous Delivery from Jez Humble:

Continuous Delivery is the ability to get changes of all types—including new features,
configuration changes, bug fixes, and experiments—into production, or into the hands
of users, safely and quickly in a sustainable way.

Safely means pipelines enforce quality, testing, and a mechanism to deal with failure.
Quickly implies pipelines promote code without human intervention, in an automated
fashion, and finally, sustainable means pipelines can consistently achieve all this with
low effort and resources.

Good delivery is fast and repeatable, great pipelines are fast, safe, and repeatable.The
book Accelerate states that elite performers have a lead time of less than 1 hour, and
a change failure rate of less than 15% for production deployments. Therefore, a great
pipeline will complete in under an hour, and catch 95% of anomalies and regressions,
before code reaches an end user.

If your code takes longer than an hour to reach production, or if more than 2 out of 10
deployments fail, you might want to reconsider your pipeline design and strategy.
Because experimentation takes iteration, having an all-out deployment might be too
lengthy to make targeted changes or experiments if it needs to happen throughout
the day. Experimentation is important in the next generation of DX.

Importance of
Experimentation for
Developer Experience

Experimentation has been around in the business world for a long time. From credit
card vendors changing credit rules for certain cards to the placement of goods in retail
stores, experimentation in business is to be expected. However, because of previous pain
or fear of deploying and potentially having an unbound blast radius (e.g. impacting all
users), experimentation with production traffic/users might take fairly long cycles in the
development world—and sometimes altogether be avoided.

P / 16© Harness Inc. 2021

One Developer Experience — Build, Deploy, and Experiment

Importance of
Experimentation for
Developer Experience (Cont.)

The ability to experiment goes hand in hand with the ability to quickly iterate. Core to
innovation work is to iterate, adjust, and optimize. Without having data from different
renditions or experiments, improvements can turn into guesswork. As a developer,
the experience around experimenting in a local or development environment is great
because of the speed of implementation and limited blast radius of the changes/
experiments. Though, to get actual production data and provide important feedback
loops, feature flags are key to supporting DX in experimentation. The ability to
experiment might not fit with the UX mappings to DX, but more of an intrinsic
experience with more ability to help shape and mold product direction, for example.

Like the scientific method taught us, we need to be able to capture data and have
a baseline/control when we run experiments. Having an idea of what is normal vs.
regression for an application can actually be another challenge; going back, usually
no one person works their entire career on one application.

Managing Feature Flags

P / 17© Harness Inc. 2021

One Developer Experience — Build, Deploy, and Experiment

Understanding
Normality in
Applications

A common challenge for developers is having a clear picture of what is normal
performance behavior for a distributed application. Going back to engineers being
natural optimizers, when starting a project, a generic overarching goal of improving
performance or stability is usually in the backlog in some shape or form.

The question of “who owns the performance” of an application can be like playing a
game of hot potato. Ranging from operations engineers to performance engineers
down to the developers who wrote the feature, everyone has expertise to offer. From
a developer’s perspective, unless the developer has production-facing or on-call
responsibilities, disseminating this information can be tricky.

Even in lower environments, when introducing a change, performance impact or
regression can slip through the cracks until getting closer to production. The adage
“slowness is the new down” is very true for internal and external customers alike.
Disseminating information that was not easily unlocked before is core to the findability
and credibility portions of Developer Experience.

One of the last chasms to cross around Developer Experience supporting both the
findability and credibility portions is solving for cost and density optimization.

Continuous Verification Making Automated Judgment Calls

P / 18© Harness Inc. 2021

One Developer Experience — Build, Deploy, and Experiment

Continuing On the
Optimization Journey —
Cost and Density

As systems grow more distributed, so do the lower environments that support distributed
development and the increased flurry of iteration. It is a two-part problem to solve for.
How does one optimize lower environments, and how does one optimize production
environments? Providing functionality to assist in the optimization and dissemination
of information fosters a better DX.

Lower
Environments

One of the quintessential engineering jokes is that turning off is easy but turning back
on is hard. Supporting development infrastructure and distributed environments can be
quite costly. Shutting down resources on the flip side brings one more delay: eventually,
developers will need to spin back up the resources. Because of advancements in compute
and container technology, this could be slightly faster than years gone by. Development
environments can consistently criss-cross distributed infrastructure to start back. The
ability to autostop and also autostart workloads can help support the “what if I need it
again” point of view.

AutoStopping/Starting Rules

P / 19© Harness Inc. 2021

One Developer Experience — Build, Deploy, and Experiment

Continuing On the
Optimization Journey —
Cost and Density (Cont.)

Having clear and concise information on public cloud spend in how it pertains to specific
applications and services can be an exercise in data aggregation and mathematical
calculations. The ability to unlock and disseminate usage, density, and cost information
pertaining to public cloud workloads allows for all engineers to make optimizations. Like
modern paradigms around shifting left, developers will make the best decisions based
on the data they have available to them. Typically, cost information would be locked
away by finance orgs — but with these new FinOps methodologies, information is shared
and optimizations are applied.

All
Environments

Cost Optimization and Visibility

P / 20© Harness Inc. 2021

One Developer Experience — Build, Deploy, and Experiment

The Harness Platform:
One DX From Idea to
Production and Back

The Harness Platform offers all of these pillars — and more — to help drive a positive
Developer Experience from idea to production, and support as many of those iterative
cycles to match the speed of development.

Supporting great developer experience, your four key metrics from Accelerate
(deployment frequency, lead time for changes, MTTR, and change failure rate) can
all improve.

Deployment Metrics

In Conclusion

Developer Experience is key to building and maintaining the
next generation of software and platforms. As technology
proliferates our lives, your external customers do not care how
features reach production. However, your internal customers
are the source of those features and improving their experience
will improve and nurture the innovation pipeline. As engineers
in industry continue to move around to increase their skill and
craft, having engineers become more productive in a shorter
period of time fosters a culture of learning and innovation.

P / 21© Harness Inc. 2021

One Developer Experience — Build, Deploy, and Experiment

Author
Appendix

P / 22© Harness Inc. 2021

Ravi Lachhman
Evangelist
Harness

Prior to Harness, Ravi was an evangelist at AppDynamics.
He has held various sales and engineering roles at
Mesosphere, Red Hat, and IBM helping commercial and
federal clients build the next generation of distributed
systems. Ravi enjoys traveling the world with his stomach
and is obsessed with Korean BBQ.

Written By:

The Cloud Cost Management Buyer’s Guide

